Diagonalization and eigenvalues

There are lots of real-life systems that evolve over time that can be modelled with linear algebra. We will see That diagonalization helps us describe these systems.

Example: bird population
For this example, we assume $\#$ of males $=\#$ of females and we only count fernales.

Three assumptions governing their population growth:
(1.) \# of juvenile females $=2$. $\#$ adult females alive hatched in a year the previous year

$$
\text { (reproduction rate }=2 \text {) }
$$

(2.) $\frac{1}{2}$ adult females survive to the next year

$$
\text { (adult survival rate }=\frac{1}{2} \text {) }
$$

(3.) $\frac{1}{4}$ juveniles survive to adulthood. (juvenile survival rate $=\frac{1}{4}$)

If there are 100 adult females, 40 juvenile females, what is the population in k years?
$a_{k}=\#$ adults in k years
$j_{k}=\#$ juveniles in k years

$$
\text { Total pop }=a_{k}+j_{k}
$$

The assumptions give us recursive equations:

$$
\begin{aligned}
& a_{k+1}=\frac{1}{2} a_{k}+\frac{1}{4} j_{k} \\
& j_{k+1}=2 a_{k}
\end{aligned}
$$

set $\vec{V}_{k}=\left[\begin{array}{l}a_{k} \\ j_{k}\end{array}\right]$.
Then $\vec{v}_{k+1}=\left[\begin{array}{c}\frac{1}{2} a_{k}+\frac{1}{4} j_{n} \\ 2 a_{k}\end{array}\right]=\underbrace{\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{4} \\ 2 & 0\end{array}\right]}_{A} \vec{V}_{k}$
so

$$
\begin{gathered}
\vec{v}_{1}=A \vec{v}_{0} \\
\vec{v}_{2}=A \vec{v}_{1}=A^{2} \vec{v}_{0} \\
\vdots \\
\vec{v}_{p}=A^{k} \vec{v}_{0}
\end{gathered}
$$

We know $\vec{v}_{0}=\left[\begin{array}{c}100 \\ 40\end{array}\right]$, so to find \vec{v}_{k}, we heed to compute
A^{k} for $k>0$. We'll come back to this once we have more technical machinery.

Def: If A is a square matrix, then a sequence $\vec{v}_{0}, \vec{v}_{1}, \vec{v}_{2}, \ldots$ of vectors is called a linear dynamical system if \vec{v}_{0} is known and

$$
\vec{V}_{k+1}=A \vec{V}_{k} \text { for each } k \geq 0 \text {. }
$$

These conditions are called a matrix recurrence and just like in the above example, they imply $\vec{V}_{k}=A^{k} \vec{V}$.

How do we compute A^{k} ?

Idea: D is a diagonal matrix if it is 0 away from the diagonal. D^{k} is easy to compute.

To compute A^{k}, we diagonalize it, i.e. we find an invertible matrix P such that $P^{-1} A P=D$, a diagonal matrix.

Then $A=P D P^{-1}$, so $A^{k}=\underbrace{\left(P D P^{-1}\right)\left(P D P^{-1}\right) \ldots\left(P D P^{-1}\right)}_{k \text { times }}$
$=P D^{k} P^{-1}$, which is easy to compute.

We need to learn how to find the matrix P. We do This by first computing the eigenvalues of A :

Eigenvalues + Eigenvectors

Def: If A is an $n \times n$ matrix, a number λ is an eigenvalue of A if $A \vec{x}=\lambda \vec{x}$ for some vector $\vec{x} \neq \overrightarrow{0}$ in \mathbb{R}^{n}. \vec{x} is called an eigenvector corresponding to λ, or a λ-eigenvector.

Ex: Let $A=\left[\begin{array}{cc}4 & -3 \\ 2 & -1\end{array}\right]$.

Notice that $\underbrace{\left[\begin{array}{ll}4 & -3 \\ 2 & -1\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}3 \\ 2\end{array}\right]}_{\vec{\rightharpoonup}}=\left[\begin{array}{l}6 \\ 4\end{array}\right]=\underbrace{2}_{\lambda} \underbrace{\left[\begin{array}{l}3 \\ 2\end{array}\right]}_{\vec{x}}$
So $\lambda=2$ is an eigenvalue of A with corresponding eigenvector $\left[\begin{array}{l}3 \\ 2\end{array}\right]$.

How do we find eigenvalues/eigenvectors?
Note that $\lambda \vec{x}=\left[\begin{array}{ccc}\lambda & & 0 \\ \lambda & \ddots & \\ 0 & & \lambda\end{array}\right] \vec{x}=\lambda I \vec{x}$.
So $A \vec{x}=\lambda \vec{x}$ is the same as $A \vec{x}=\lambda I \vec{x}$.
So λ is an eigenvalue if

$$
\lambda I \vec{x}-A \vec{x}=\vec{O} \text { for some } \vec{x} \neq 0 \text {. }
$$

That is, if $(\lambda I-A) \vec{x}=\vec{O}$ has a nontrivial solution.

This happens if and only if $\lambda I-A$ is not invertible, ie.

$$
\operatorname{det}(\lambda I-A) \neq 0 .
$$

Def: If A is an $n \times n$ matrix, the characteristic polynomial of A is

$$
c_{A}(x)=\operatorname{det}(x I-A) .
$$

へ(degree n)
Then we can see that λ is an eigenvalue if and only if $C_{A}(\lambda)=0$, i.e. if λ is a root of $C_{A}(x)$. This gives us the
following:

Thu: Let A be an $n \times n$ matrix.
(1.) The eigenvalues of A are the roots of the characteristic polynomial $C_{A}(x)$ of A.
(2) If λ is an eigenvalue of A, then the λ-eigenvectors are the nonzero solutions to the system

$$
(\lambda I-A) \vec{\lambda}=\stackrel{\rightharpoonup}{0}
$$

Ex: Let's go back to the matrix

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
4 & -3 \\
2 & -1
\end{array}\right] \\
& C_{A}(x)=\operatorname{det}(x I-A)=\operatorname{det}\left(\left[\begin{array}{ll}
x & 0 \\
0 & x
\end{array}\right]-\left[\begin{array}{ll}
4 & -3 \\
2 & -1
\end{array}\right]\right) \\
&=\operatorname{det}\left[\begin{array}{cc}
x-4 & 3 \\
-2 & x+1
\end{array}\right] \\
&=(x-4)(x+1)-(3)(-2) \\
&=x^{2}-3 x-4+6 \\
&=x^{2}-3 x+2 \\
&=(x-1)(x-2)
\end{aligned}
$$

This has two roots: 1,2. So A has eigenvalues

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=2
\end{aligned}
$$

First, we find the λ_{1}-eigenvectors:
We solve the system

$$
\begin{aligned}
& \left(\lambda_{1} I I-A\right) \vec{x}=\overrightarrow{0} \\
& \left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{cc}
4 & -3 \\
2 & -1
\end{array}\right]\right) \vec{x}=\overrightarrow{0} \\
& = \\
& {\left[\begin{array}{ll}
-3 & 3 \\
-2 & 2
\end{array}\right] \vec{x}=\overrightarrow{0}}
\end{aligned}
$$

This has solution $-1 x_{1}+1 x_{2}=0$.
Setting $x_{2}=t$, the general solution is
so the eigenvectors corresponding to the eigenvalue 1 are

$$
t\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad t \neq 0 .
$$

For the 2-eigenvectors, we solve

$$
\begin{aligned}
& \left(\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]-\left[\begin{array}{ll}
4 & -3 \\
2 & -1
\end{array}\right]\right) \vec{x}=\overrightarrow{0} \\
& {\left[\begin{array}{ll}
-2 & 3 \\
-2 & 3
\end{array}\right] \vec{x}=\overrightarrow{0} } \\
\Rightarrow & -2 x_{1}+3 x_{2}=0 \Rightarrow x_{1}=\frac{3}{2} x_{2}
\end{aligned}
$$

So 2-eigenvectors are $t\left[\begin{array}{c}\frac{3}{2} \\ 1\end{array}\right], \quad t \neq 0$.

Note: For each eigenvalue λ of a matrix A, There will be infinitely many λ-eigenvectors, all nontrivial solutions of $(\lambda I-A) \vec{x}=\overrightarrow{0}$.

The eigenvectors will be linear combinations of basic solutions, called basic eigenvectors corresponding to λ.

Ex:

$$
A=\left[\begin{array}{rrr}
2 & 0 & 0 \\
1 & 2 & -1 \\
1 & 3 & -2
\end{array}\right]
$$

$$
\begin{aligned}
\underset{\text { polynomial }}{\text { characteristic }}=C_{A}(x) & =\operatorname{det}\left[\begin{array}{ccc}
x-2 & 0 & 0 \\
-1 & x-2 & 1 \\
-1 & -3 & x+2
\end{array}\right] \\
& =(x-2)((x-2)(x+2)-(1)(-3)) \\
& =(x-2)\left(x^{2}-4+3\right) \\
& =(x-2)(x-1)(x+1)
\end{aligned}
$$

So A has eigenvalues $\lambda_{1}=2, \lambda_{2}=1, \lambda_{3}=-1$
For $\lambda_{1}=2$:

$$
\lambda_{1} I-A=\left[\begin{array}{rrr}
0 & 0 & 0 \\
-1 & 0 & 1 \\
-1 & -3 & 4
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & -3 & 4 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
-1 & -3 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & -3 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& \longrightarrow\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow \begin{array}{l}
x_{1}-x_{3}=0 \\
x_{2}-x_{3}=0
\end{array}
\end{aligned}
$$

Solution:

$$
\left.\begin{array}{l}
x_{1}=t \\
x_{2}=t \Rightarrow \lambda_{1} \text {-eigenvectors : } t\left[\begin{array}{l}
1 \\
1 \\
x_{3}=t
\end{array}\right], \quad t \neq 0 ~ . ~ . ~
\end{array}\right]
$$

Practice problem: Find eigenvectors for remaining 2 eigenvalues $\lambda_{2}=1, \lambda_{3}=-1$.

Note: $x I-A^{T}=(x I-A)^{T}$, so A^{\top} and A have same eigenvalues.

A-invariance
Let A be a 2×2 matrix. A line L through the origin in \mathbb{R}^{2} is called A-invaviant if $A \vec{x}$ is in L whenever \vec{x} is in L.

Geometrically:

How does this relate to eigenvectors?

Let $\vec{x} \neq \overrightarrow{0}$ be any nonzero vector in \mathbb{R}^{2}. Let $L_{\vec{x}}$ be the unique line through the origin containing \vec{x}.

$L_{\vec{x}}$ consists of all scalar multiples of \vec{x}. That is,

$$
L_{\vec{x}}=\{t \vec{x} \mid t \text { is in } \mathbb{R}\}
$$

Suppose \vec{x} is an eigenvector of A, so $A \vec{x}=\lambda \vec{x}$, some scalar λ. Then for any $t \vec{x}$ in the line $L_{\vec{x}}$, we have

$$
A(t \stackrel{\rightharpoonup}{x})=t(A \vec{x})=\underbrace{(t \lambda)}_{\text {scalar }} \vec{x} \text {, which is again in } L \vec{x} \text {. }
$$

So $L_{\vec{x}}$ is A-invariant.

The converse holds as well: if $L_{\vec{x}}$ is A-invariant, then $A \vec{x}$ is in $l_{\vec{x}}$, so $A \vec{x}=t \vec{x}$, some t, so \vec{x} is an eigenvector for $A, w /$ eigenvalue t.

Thus, we've proved the following theorem:

Theorem: Let A be a 2×2 matrix, $\vec{x} \neq \overrightarrow{0}$ a vector in \mathbb{R}^{2}, and $L \vec{x}$ the line through the origin containing \vec{x}. Then
\vec{x} is an eigenvector of A if and only if $L_{\vec{x}}$ is A-invariant.
Ex: (1.) Let $R_{\pi / 2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation which is CCW rotation by $\pi / 2$ with corresponding matrix $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.

No line is A-invariant, since it sends every vector to a different line. Thus, A has no eigenvalues
(2.) Let $P_{m}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ correspond to projection onto the line $y=m x, A$ the corresponding matrix.
 The only vectors that stay in the same line are those in the line $y=m x$, OR in the line perpendicular to $y=m x$, i.e. $y=\frac{-1}{m} x$ (assuming $m \neq 0$)

In the first case, this means that it $\vec{x}=\left[\begin{array}{l}1 \\ m\end{array}\right]$,
Then $L_{\vec{x}}$ is A-invariant.
Moreover, $A\left[\begin{array}{c}1 \\ m\end{array}\right]=\left[\begin{array}{l}1 \\ m\end{array}\right]$ (projection on to itself) $t\left[\begin{array}{l}1 \\ m\end{array}\right]$ are eigenvectors $w /$ corresponding
eigenvalue 1 .

In the second case, all the vectors in $y=\frac{-1}{m} x$ get sent to $\overrightarrow{0}$, so the corresponding eigenvectors are

$$
\left[\begin{array}{c}
1 \\
-1 / m
\end{array}\right] t \text {, or, equivalently }\left[\begin{array}{c}
m \\
-1
\end{array}\right] t, \quad t \neq 0
$$

In this case $A\left[\begin{array}{c}m \\ -1\end{array}\right]=\overrightarrow{0}=0\left[\begin{array}{c}m \\ -1\end{array}\right]$, so the corresponding eigenvalue is 0 .

