Diagonalization and eigenvalues

There are lots of real-life systems that evolve over time that can be modelled with linear algebra. We will see That diagonalization helps us describe these systems.

Example: bird population

For this example, we assume # of males = # of females and we only count females.

Three assumptions governing their population growth:

I # of juvenile females = 2 · # adult females alive hatched in a year
The previous year

(2)
$$\frac{1}{2}$$
 adult females survive to the next year
(adult survival rate = $\frac{1}{2}$)

(3) $\frac{1}{4}$ juveniles survive to adulthood. (juvenile survival rate = $\frac{1}{4}$)

If there are 100 adult females, 40 juvenile females, What is the population in k years?

The assumptions give us recursive equations:

$$a_{k+1} = \frac{1}{2} a_{k} + \frac{1}{4} \frac{1}{3}k$$

$$j_{k+1} = 2a_{k}$$
set $\vec{v}_{k} = \begin{bmatrix} a_{k} \\ j_{k} \end{bmatrix}$.
Then $\vec{v}_{k+1} = \begin{bmatrix} \frac{1}{2} a_{k} + \frac{1}{4} \frac{1}{3}k \\ 2a_{k} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} \\ 2 & 0 \end{bmatrix} \vec{v}_{k}$
so $\vec{v}_{1} = A\vec{v}_{0}$

$$\vec{v}_{2} = A\vec{v}_{1} = A^{2}\vec{v}_{0}$$

$$\vdots$$

$$\vec{v}_{k} = A^{k}\vec{v}_{0}.$$
We know $\vec{v}_{0} = \begin{bmatrix} 100\\ 40 \end{bmatrix}$, so to find \vec{v}_{k} , we need to compute
$$A^{k} \text{ for } k \ge 0.$$
 We'll come back to this once we have more technical machinery.

Def: If A is a square matrix, then a sequence $\vec{v}_0, \vec{v}_1, \vec{v}_2, ...$ of vectors is called a <u>linear dynamical system</u> if \vec{v}_0 is known and

$$\vec{V}_{k+1} = A \vec{V}_k$$
 for each $k \ge 0$.

These conditions are called a matrix recurrence and just like in the above example, They imply $\vec{V}_{\mu} = A^{\mu}\vec{V}_{\mu}$ How do we compute Ak?

Idea: D is a diagonal matrix if it is O away from the diagonal. D^k is easy to compute.

To compute A^{*} , we <u>diagonalize</u> it, i.e. we find an invertible matrix P such that $P^{-1}AP = D$, a diagonal matrix.

Then
$$A = PDP^{-1}$$
, so $A^{k} = (PDP^{-1})(PDP^{-1}) \dots (PDP^{-1})$
 $k \text{ times}$
 $= PD^{k}P^{-1}$, which is easy to
compute.

We need to learn how to find the matrix P. We do This by first computing the eigenvalues of A:

Eigenvalues + Eigenvectors

Def: If A is an hxn matrix, a number λ is an <u>eigenvalue</u> of A if $A\vec{x} = \lambda\vec{x}$ for some vector $\vec{x} \neq \vec{0}$ in \mathbb{R}^n . \vec{x} is called an <u>eigenvector</u> corresponding to λ , or a λ -<u>eigenvector</u>.

$$\mathbf{\overline{5X}}: \quad \text{Let} \quad \mathbf{A} = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}$$

Notice that
$$\begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix} = 2 \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

A \overrightarrow{x}

So $\lambda = 2$ is an eigenvalue of A with corresponding eigenvector $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$.

Note that
$$\lambda \vec{x} = \begin{bmatrix} \lambda & b \\ 0 & \lambda \end{bmatrix} \vec{x} = \lambda \vec{L} \vec{x}$$

So $A\vec{x} = \lambda \vec{x}$ is the same as $A\vec{x} = \lambda I \vec{x}$. So λ is an eigenvalue if

$$\lambda T \vec{x} - A \vec{x} = \vec{O}$$
 for some $\vec{x} \neq O$.

That is, if $(\lambda I - A)\vec{x} = \vec{0}$ has a nontrivial solution.

This happens if and only if $\lambda I - A$ is not invertible, i.e. $det(\lambda I - A) \neq O.$

Def: If A is an nxn matrix, the <u>characteristic polynomial</u> of A is

$$C_A(x) = det(xI-A)$$
.
(degree n

Then we can see that λ is an eigenvalue if and only if $C_A(\lambda) = 0$, i.e. if λ is a <u>voot</u> of $C_A(x)$. This gives us the

following:

Thm: let A be an nxn matrix.

- (1) The eigenvalues of A are the roots of the characteristic polynomial $C_A(\pi)$ of A.
- (2) If λ is an eigenvalue of A, then the λ -eigenvectors are the honzero solutions to the system $(\lambda I - A)\vec{\lambda} = \vec{0}.$

Ex: let's go back to the matrix

$$A = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}$$

$$C_{A}(x) = det (x - A) = det (\begin{bmatrix} x & 0 \\ 0 & x \end{bmatrix} - \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix})$$

$$= det \begin{bmatrix} x - 4 & 3 \\ -2 & x + 1 \end{bmatrix}$$

$$= (x - 4)(x + 1) - (3)(-2)$$

$$= x^{2} - 3x - 4 + 6$$

$$= x^{2} - 3x + 2$$

$$= (x - 1)(x - 2)$$
This has two poots: 1, 2. So A has eigenvalues
 $\lambda_{1} = (x - 4)(x - 2)$

First, we find the λ_1 -eigenvectors: We solve the system

$$\begin{pmatrix} \lambda : I - A \end{pmatrix} \stackrel{\rightarrow}{x} = \stackrel{\rightarrow}{O} \\ \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} - \begin{pmatrix} 4 & -3 \\ 2 & -I \end{pmatrix} \stackrel{\rightarrow}{\chi} = \stackrel{\rightarrow}{O} \\ \stackrel{\rightarrow}{=} \begin{pmatrix} -3 & 3 \\ -2 & 2 \end{pmatrix} \stackrel{\rightarrow}{\chi} = \stackrel{\rightarrow}{O}$$

This has solution $-1x_1 + 1x_2 = 0$.

Setting
$$x_2 = t$$
, the general solution is
 $x_1 = l$
 $x_2 = t$, or $\overline{x}_1 = t \begin{bmatrix} l \\ l \end{bmatrix}$.

so the eigenvectors corresponding to the eigenvalue 1 are $t \begin{bmatrix} 1 \\ 1 \end{bmatrix}, t \neq 0$.

For the 2-eigenvectors, we solve $\left(\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} - \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix} \right) \vec{\chi} = \vec{0}$ $\left[\begin{bmatrix} -2 & 3 \\ -2 & 3 \end{bmatrix} \vec{\chi} = \vec{0}$ $\Rightarrow -2 \vec{\chi}_{1} + 3 \vec{\chi}_{2} = \vec{0} \Rightarrow \vec{\chi}_{1} = \frac{3}{2} \vec{\chi}_{2}$

So 2-eigenvectors are
$$t \begin{bmatrix} \frac{3}{2} \\ 1 \end{bmatrix}$$
, $t \neq 0$

Note: For each eigenvalue 2 of a matrix A, There will be infinitely many 2-eigenvectors, all nontrivial $(\lambda I - A) \vec{x} = \vec{0}.$

The eigenvectors will be linear combinations of basic solutions, called basic eigenvectors corresponding to A.

Ex:

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & -1 \\ 1 & 3 & -2 \end{bmatrix}$$

characteristic =
$$C_A(x) = det \begin{pmatrix} x - 2 & 0 & 0 \\ -1 & x - 2 & 1 \\ -1 & -3 & x + 2 \end{pmatrix}$$

= $(x - 2)((x - 2)(x + 2) - (1)(-3))$
= $(x - 2)(x^2 - 4 + 3)$
= $(x - 2)(x - 1)(x + 1)$

So A has eigenvalues $\lambda_1 = 2, \lambda_2 = 1, \lambda_3 = -1$

For $\lambda_1 = 2$: $\lambda_{1}I - A = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 1 \\ -1 & -3 & 4 \end{bmatrix}$

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & -3 & 4 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ -1 & -3 & 4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\longrightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\implies \chi_1 = \chi_3 = 0$$

$$\chi_1 = \chi_2 = \chi_3 = 0$$

$$x_1 = t$$

$$x_2 = t \implies \lambda_1 - eigen vectors : t \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad t \neq 0.$$

$$x_3 = t$$

Practice problem: Find eigenvectors for remaining 2 eigenvalues $\lambda_2 = 1$, $\lambda_3 = -1$.

A -invariance

let A be a 2×2 matrix. A line L through the origin in \mathbb{R}^2 is called A-invariant if $A\overline{x}$ is in L whenever \overline{x} is in L.

How does this relate to eigenvectors?

Let $\vec{x} \neq \vec{O}$ be any nonzero vector in \mathbb{R}^2 . let $L_{\vec{x}}$ be the unique line through the origin containing x. L X La consists of all scalar multiples of Z. That is, $L_{\vec{x}} = \begin{cases} t \vec{x} & | t is in | R \end{cases}$ Suppose à is an eigenvector of A, so Az= 2z, some scalar 2. Then for any tr in the line Lz, we have $A(t\vec{x}) = t(A\vec{x}) = (t\lambda)\vec{x}$, which is again in $L\vec{x}$. So Liz is A -invariant.

The converse holds as well: if $L_{\vec{x}}$ is A-invariant, then $A_{\vec{x}}$ is in $L_{\vec{x}}$, so $A_{\vec{x}} = t_{\vec{x}}$, some t, so \vec{x} is an eigenvector for A, we eigenvalue t.

Thus, we've proved the following theorem:

Theorem: let A be a 2x2 matrix, $\vec{x} \neq \vec{0}$ a vector in \mathbb{R}^2 , and $L\vec{x}$ the line through the origin containing \vec{x} . Then

Ex: 1. Let
$$R_{T_{z}}: \mathbb{R}^{2} \to \mathbb{R}^{2}$$
 be the linear transformation
which is CCW rotation by T_{z} with corresponding
matrix $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

No line is A-invariant, since it sends every vector to a different line. Thus, A has no eigenvalues

In the first case, this means that if $\vec{x} = \begin{bmatrix} 1 \\ m \end{bmatrix}$, Then $L_{\vec{x}}$ is A-invariant. Moreover, $A\begin{bmatrix} 1 \\ m \end{bmatrix} = \begin{bmatrix} 1 \\ m \end{bmatrix}$ (projection onto itself) $t\begin{bmatrix} m \\ m \end{bmatrix}$ are eigenvectors w/ corresponding eigenvalue l.

In the second case, all the vectors in $y=\frac{1}{m} \times get$ sent to $\vec{0}$, so the corresponding eigenvectors are

$$\begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} t$$
, or, equivalently $\begin{bmatrix} m \\ -1 \end{bmatrix} t$, $t \neq 0$.

In this case $A\begin{bmatrix}m\\-1\end{bmatrix} = \overrightarrow{0} = 0\begin{bmatrix}m\\-1\end{bmatrix}$, so the

corresponding eigenvalue is O.